lunes, 3 de abril de 2017

Números piramidales (2): Tetraedros.


Esta entrada forma serie con otra ya publicada, cuya lectura se recomienda, situada en la dirección

http://hojaynumeros.blogspot.com.es/2017/03/numeros-piramidales1-definiciones-y.html

A los números piramidales triangulares se les conoce también como tetraédricos, o simplemente tetraedros (abreviado, TET), en recuerdo del primer poliedro regular. Todos ellos se forman a partir del 1 adosando los distintos números triangulares, 3, 6, 10, 15, 21, 28… por lo que también podemos decir que los tetraédricos equivalen a las sumas parciales de los triangulares.



TET(1)=1
TET(2)=1+3=4
TET(3)=4+6=1+3+6=10
TET(4)=10+10)1+3+6+10=20

La lista de los primeros será, pues:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925,… http://oeis.org/A000292

La puedes reproducir con la calculadora Calcupol que presentamos en la anterior entrada de esta serie.

http://www.hojamat.es/sindecimales/aritmetica/herramientas/herrarit.htm#figurados

Basta fijar el tipo en Piramidal, el orden en 3, y escribir en pantalla 1. Con esto, cada vez que pulses en la Tecla PROX se formará un nuevo piramidal tetragonal. En la imagen llegamos hasta 969:



La formula para estos números se simplifica mucho. Recordamos la expresión general para todos los piramidales:

Hacemos k=3 y queda:


Esta expresión nos suena familiar, y es que equivale al número combinatorio n+2 sobre 3:


Por ejemplo, el tetragonal de orden 7 es 84, y equivale a (7*8*9)/6=504/6=84
Puedes usar la expresión de hoja de cálculo COMBINAT, para calcular el número combinatorio:

Y ya, por repasar más detalles, con nuestra calculadora combinatoria puedes usar las teclas 9 C 3:



La tienes en la dirección

http://www.hojamat.es/sindecimales/combinatoria/herramientas/herrcomb.htm#calcucomb

Por ser números combinatorios de orden 3, los tetraedros se situarán en la cuarta fila del triángulo de Pascal:



(Imagen adaptada de otra contenida en Wikipedia.es)

Por cierto, y como era de esperar, los números triangulares se presentan en la anterior paralela.

Curiosidades

Al igual que hicimos con cuestiones similares, desarrollaremos a continuación algunas propiedades, muchas de ellas tomadas de http://oeis.org/A000292

Suma de diferencias

Si, como es costumbre en oeis.org, comenzamos la sucesión por el 0, resulta que cada número tetragonal de orden n es suma de todas las diferencias b-a que se pueden formar entre los números 1, 2, 3, … n entre sí, si b>=a (Amarnath Murthy, May 29 2003). Lo vemos mejor con un esquema de esas diferencias. La imagen contiene el desarrollo para el tetragonal 20:



Las cabeceras de filas y columnas están formadas por los números del 1 al 5. En el centro figuran las diferencias entre ellos sin contar las negativas, y a la derecha figuran sus sumas por filas. El número 20 resulta como suma de todas las diferencias del interior. Como ese número, por definición, es suma de triangulares, se formará a partir de 10+6+3+1, que son triangulares porque cada uno es suma de enteros consecutivos 1, 2,… k.

Suma de productos

El mismo autor, Amarnath Murthy, nos propone otra igualdad interesante, y es proceder a multiplicar todos los sumandos posibles p y q cuya suma es n+1, y todos los productos también sumarán un número tetragonal. En este caso es más una curiosidad algebraica que aritmética, pues se justifica así:

Suma de productos p*q con p+q=n+1:

1(n+1-1)+2(n+1-2)+3(n+1-3)+…+n(n+1-n)=n(n+1)(n+1)/2-1^2-2^2-…n^2

Pero la suma de cuadrados es n(n+1)(2n+1)/6

Restamos y queda n(n+1)(n+1)/2- n(n+1)(2n+1)/6 =n(n+1)(3n+3-2n+1)/6=n(n+1)(n+2)/6

Como es la expresión del tetragonal de orden n, ya lo tenemos demostrado. Un esquema con hoja de cálculo aclara bastante el proceso. En este caso no se considera el 0 como inicio de la sucesión:



Suma de cuadrados

Un número tetragonal, si tiene lado par n, coincide con la suma de los cuadrados de todos los números pares comprendidos entre 1 y n/2. Por ejemplo:

El tetragonal 56=TET(6) equivale a la suma 2^2+4^2+6^2=4+16+36=56. Basta aplicar la suma de cuadrados consecutivos, ((n(n + 1)(2n + 1)) / 6), al caso n/2 y después multiplicar por el factor común 2^2=4. En cuanto desarrollemos
obtenemos TET(n)= n(n+1)(n+2)/6:

Suma cuadrados pares es  4(n/2)(n/2+1)(n+1)/6=n(n+1)(n+2)/6

Si es impar, bastará sumar el mismo número de cuadrados impares. Como 35=1^2+3^2+5^2=1+9+25

Basta ver que la suma de ambos daría la de todos los cuadrados, en este caso, 56+35=91, que coincide con (6*7*(2*6+1))/6=7*13=91, luego es válida la posibilidad de sumar cuadrados impares.

Fórmula de recurrencia

Al tener expresión algebraica sencilla, los números tetragonales permiten fácilmente una expresión recurrente. En concreto es:

TET(n) = n + 2*TET(n-1) - TET(n-2)

La demostración es inmediata: n + 2*TET(n-1) - TET(n-2)=n+2*(n-1)*n*(n+1)/6-(n-2)(n-1)n/6 y simplificando llegamos a n(n+1)(n+2)/6=TET(n)
Si disponemos estos números en columna, podemos aplicar a cada dos de ellos esta fórmula de recurrencia:



Las líneas nos indican que 35 depende de los dos anteriores, 10 y 20, y de su número de orden 5, mediante la operación 35 = 5+2*20-10 = 35

Equivalencia con un triangular

Una cuestión interesante es estudiar la posibilidad de reducir un número tetraédrico a un triangular puro, como si “aplanáramos” la pirámide hasta convertirla en un número triangular con un lado distinto. Basta aplicar el criterio para que m sea triangular, y es que 8m+1 sea cuadrado. Pues bien. Aplicando ese criterio, sólo se han encontrado cinco números tetraédricos que sean también triangulares: 1, 10, 120, 1540 y 7140. Si aplicamos el criterio al cuarto, nos queda:

8*1540+1 = 12321 = 111^2

Por cierto, la equivalencia con un cuadrado aún es más escasa: sólo son cuadrados los tetraédricos 1, 4 y 19600.



No hay comentarios: